47 research outputs found

    Weakly-Supervised Video Anomaly Detection with Snippet Anomalous Attention

    Full text link
    With a focus on abnormal events contained within untrimmed videos, there is increasing interest among researchers in video anomaly detection. Among different video anomaly detection scenarios, weakly-supervised video anomaly detection poses a significant challenge as it lacks frame-wise labels during the training stage, only relying on video-level labels as coarse supervision. Previous methods have made attempts to either learn discriminative features in an end-to-end manner or employ a twostage self-training strategy to generate snippet-level pseudo labels. However, both approaches have certain limitations. The former tends to overlook informative features at the snippet level, while the latter can be susceptible to noises. In this paper, we propose an Anomalous Attention mechanism for weakly-supervised anomaly detection to tackle the aforementioned problems. Our approach takes into account snippet-level encoded features without the supervision of pseudo labels. Specifically, our approach first generates snippet-level anomalous attention and then feeds it together with original anomaly scores into a Multi-branch Supervision Module. The module learns different areas of the video, including areas that are challenging to detect, and also assists the attention optimization. Experiments on benchmark datasets XDViolence and UCF-Crime verify the effectiveness of our method. Besides, thanks to the proposed snippet-level attention, we obtain a more precise anomaly localization

    Functional response of the soil microbial community to biochar applications

    Get PDF
    Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality. However, the mechanism of biochar's effect on soil microbial communities remains unclear. Therefore, we conducted a global meta-analysis, where we collected 2,110 paired observations from 107 published papers and used structural equation modeling (SEM) to analyze the effects of biochar on microbial community structure and function. Our result indicated that arbuscular mycorrhizal fungal abundance, microbial biomass C, and functional richness increased with biochar addition regardless of loads, time since application, and experiment types. Results from mixed linear model analysis suggested that soil respiration and actinomycetes (ACT) abundance decreased with biochar application. With the increase of soil pH, the effect of biochar on fungal abundance and C metabolic ability was lessened. Higher biochar pH associated with higher pyrolysis temperatures reduced the abundance of bacteria, fungi, ACT, and soil microbes feeding on miscellaneous C from Biolog Eco-plate experiments. SEM that examined the effect of biochar properties, load, and soil properties on microbial community indicated that fungal abundance was the dominant factor affecting the response of the bacterial abundance to biochar. The response of bacterial abundance to biochar addition was soil dependent, whereas fungi abundance was mostly related to biochar load and pyrolysis temperature. Based on soil conditions, controlling biochar load and production conditions would be a direct way to regulate the effect of biochar application on soil microbial function and increase the capacity to sequester C

    Incision of submarine channels over pockmark trains in the South China Sea

    Get PDF
    The genesis of submarine channels is often controlled by gravity flows, but channels can also be formed by oceanographic processes. Using multibeam bathymetry and two-dimensional seismic data from the western South China Sea, this study reveals how pockmarks can ultimately form channels under the effect of bottom currents and gravity-driven sedimentary processes. We demonstrate that alongslope and across-slope channels were initiated by pockmark trains on the seafloor. Discrete pockmarks were elongated due to the erosion of gravity-driven sedimentary processes and bottom currents, and later coalesced to form immature channels with irregular thalwegs. These gradually evolved into mature channels with continuous overbanks and smooth thalwegs. Submarine channel evolution was significantly influenced by seafloor topography since the Late Miocene. The evolutionary model documented here is a key to understanding how channels are formed in deep-water environments

    TITLE: Optimization of Spiral Inductors and LC Resonators Exploiting Space Mapping Technology

    No full text
    ii This thesis contributes to the computer-aided design (CAD) of spiral inductors and LC resonators with spiral inductors exploiting full-wave electromagnetic (EM) analysis. The spiral inductor is widely used in radio frequency integrated circuits (RF ICs), such as low noise amplifiers (LNA) and voltage controlled oscillators (VCO). The design of spiral inductors has a direct influence on the performance of these circuits. Recently proposed optimization methods for spiral inductors are usually based on circuit models, which are computationally efficient but inaccurate compared with full-wave electromagnetic (EM) simulations. For the first time, we develop an optimization technique for the design of spiral inductors and LC resonators exploiting both the computational efficiency of a (cheap) circuit model and the accuracy of a full-wave EM analysis, based on geometric programming (GP) and space mapping (SM). With the new technique, we can efficiently obtain EM-validated designs with considerable improvement over those obtained with traditional optimization methods. iii iv ACKNOWLEDGEMENT I wish to express my sincere thanks to my supervisor Dr. John W. Bandler

    A quasi-Newton approach to identification of a parabolic system

    No full text

    A Novel Stereo Matching Algorithm for Digital Surface Model (DSM) Generation in Water Areas

    No full text
    Image dense matching has become one of the widely used means for DSM generation due to its good performance in both accuracy and efficiency. However, for water areas, the most common ground object, accurate disparity estimation is always a challenge to excellent image dense matching methods, as represented by semi-global matching (SGM), due to the poor texture. For this reason, a great deal of manual editing is always inevitable before practical applications. The main reason for this is the lack of uniqueness of matching primitives, with fixed size and shape, used by those methods. In this paper, we propose a novel DSM generation method, namely semi-global and block matching (SGBM), to achieve accurate disparity and height estimation in water areas by adaptive block matching instead of pixel matching. First, the water blocks are extracted by seed point growth, and an adaptive block matching strategy considering geometrical deformations, called end-block matching (EBM), is adopted to achieve accurate disparity estimation. Then, the disparity of all other pixels beyond these water blocks is obtained by SGM. Last, the median value of height of all pixels within the same block is selected as the final height for this block after forward intersection. Experiments are conducted on ZiYuan-3 (ZY-3) stereo images, and the results show that DSM generated by our method in water areas has high accuracy and visual quality
    corecore